Neural network modeling of the nonlinear dynamic structural offshore system with hysteresis

نویسندگان

  • D. M. Rocha
  • N. F. F. Ebecken
  • L. P. Calôba
  • D. L. Kaiser
چکیده

This paper proposes an empirical modeling of the system formed by the riserplatform connection, in deep water. This connection has the objective of minimizing the acting bending moment, possesses high complexity and highcriticity due to economic and environmental consequences from its fault. The main element in the joint is made of elastomeric material, which reveals nonlinear hysteresis. In addition, this whole connection system presents nonlinearities due to the action of dynamic loading and large motions. TDNN and Recurrent Neural Networks (RNN) are being investigated since they possess the ability to model nonlinear hysteretic behaviors and also dynamic systems. Simulation results have confirmed that RNN is the one that presents the best representation of the system studied. Emphasis shall be given to the additional difficulties, which arise from the utilization of real data in the modeling process for this system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling SMA actuated systems based on Bouc-Wen hysteresis model and feed-forward neural network

Despite the fact that shape-memory alloy (SMA) has several mechanical advantages as it continues being used as an actuator in engineering applications, using it still remains as a challenge since it shows both non-linear and hysteretic behavior. To improve the efficiency of SMA application, it is required to do research not only on modeling it, but also on control hysteresis behavior of these m...

متن کامل

Nonlinear Dynamic Modeling and Hysteresis Analysis of Aerospace Hydro - dynamical Control Valves

A new procedure for deriving nonlinear mathematical modeling for a specific class of aerospace hydro - mechanical control valves is presented. The effects of friction on the dynamic behavior of these types of valves along with the experimental verifictions are also given. The modeling approach is based on the combination of the following three tasks: decomposition of the valve into simple speci...

متن کامل

Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks

Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...

متن کامل

Distillation Column Identification Using Artificial Neural Network

  Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...

متن کامل

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008